Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Snow cover is a critical factor controlling plant performance, such as survival, growth, and biomass, and vegetation cover in regions with seasonal snow (e.g., high-latitude and high elevation regions), due to its influence on the timing and length of the growing season, insulation effect during winter, and biotic and abiotic environmental factors. Therefore, changes in snow cover driven by rising temperatures and shifting precipitation patterns are expected to alter plant performance and vegetation cover. Despite the rapid increase in research on this topic in recent decades, there is still a lack of studies that quantitatively elucidate how plant performance and vegetation cover respond to shifting snow cover across snowy regions. Additionally, no comprehensive study has yet quantitatively examined these responses across regions, ecosystems, and plant functional types. Here, we conducted a meta-analysis synthesizing data from 54 snow cover manipulation studies conducted in both the field and laboratory across snowy regions to detect how plants performance and vegetation cover respond to decreased or increased snow cover. Our results demonstrate that plant survival, aboveground biomass, and belowground biomass exhibited significant decreases in response to decreased snow cover, with rates of survival having the greatest decrease. In response to increased snow cover, plant survival, growth, biomass and vegetation cover tended to increase, except for plant belowground length growth and biomass, which showed significant decreases. Additionally, our quantitative analysis of plant responses to changes in snow cover across regions, ecosystems, and plant functional types revealed that cold regions with thin snow cover, tundra and forest ecosystems, and woody species are particularly vulnerable to snow cover reduction. Overall, this study demonstrates the strong controls that snow cover exerts on plant performance, providing insights into the dynamics of snow-covered ecosystems under changing winter climatic conditions.more » « lessFree, publicly-accessible full text available June 5, 2026
-
The purpose of this study was to assess the effects of charcoal and earthworm presence in contrasting soil types of northern Japan using the biologically based phosphorus (BBP) extraction method, which employs a variety of plant P acquisition strategies. Using soils developed in serpentine and sedimentary parent materials, we tested the interactive effects of Eisenia japonica (Michaelsen) earthworms and 500 kg ha−1 of dwarf bamboo charcoal (Sasa kurilensis (Rupr.) Makino et Shibata) in a microcosm incubation that lasted four weeks. Soils were extracted in parallel after the incubation with the BBP method using 0.01 M CaCl2 (soluble P), 0.01 M citric acid (chelate-extractable P), 0.02 phosphatase enzyme units ml−1 (enzyme-extractable organic P), and 1.0 M HCl (mineral occluded P). Dwarf bamboo charcoal alone contained up to 444 mg total BBP kg−1 prior to application to soil microcosms. Treatment effects in soil microcosms were highest in sedimentary soil types and where charcoal was combined with earthworms (15.97 mg P kg−1 ± SE 1.23 total inorganic BBP). Recalcitrant inorganic P (HCl extracted) in combination treatments yielded the highest single inorganic BBP measure (12.41 mg kg−1 ± SE 1.11). Our findings suggest that charcoal, as a legacy of wildfire, and native earthworm activity may help stimulate cycling of recalcitrant inorganic BBP pools.more » « less
An official website of the United States government
